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DETERMINATION OF COUPLED MODES AND FREQUENCIES
OF SWEPT VINGS BY USE OF POWER SERTIES

By Roger A. Anderson
SUMMARY

A solution is presented for the coupled modes and frequencies
of swent wings mounted on a fuselage. The energy method is used in
conjunction with power seriss ito obtaln the characterlstic equations
for both symmetrical snd entisymmetricel vibration. A numerical
exauple which is susceptible to exact solution is presented, and the
results for the exact solution and the solublon presented in this
paper show excellent agreement.

" INTRODUCTION

Except for certain idealized cases, the natural vibration modes

~ end frequencies of wings (swept or unswept) camnot be found by exact

analysls, thus meking it necessary to resort to epproximate methods
of solution. This paper presents such a solution for the symmetrical
and antisymmetrical mass coupled bending and torsional modes and
frequencies of & nonuniform swent wing mounted on a fuselage. The
energy method is used to derive two sets of linear characteristic
squations; one for aymuetrical and the other for antisymmetrlcal
vibrations. The anelyels sésumes that the swept wings are essentially
beams end that the deflection and rotation of the beams conform to
standard engineering beam theory. Such an analysis may or may not be
strictly applicable Yo wings having a large root chord (especially
vhen combined with apprecisble sweep) becauvse the distortions in the
vicinlity of the root are not fully understood.

The importent feature of the method presented herein is the

. slmplification that results from the choice of simple power series
for the expension of the deflection and rotation of the vibrating
wing. Comparison of results from a power series solution to an

exact solution for the modes and frequencies of an idealized structure
ghows thet only a few terms are needed in the expansions to obtain
good accuracy.
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BYMBOLS

length of semispan along elastic axis
Young's modulus of elasticity
modulue of elastlicity in shear

bending moment of inertia of cross sections perpendicular .
to elastic axis of wing

mass polar moment of inertis per unlt lengﬁh of wing
ebout elastic axis

torsion constant for cross sections perpendicular to
elastic axis of wing

one-half of pliching poler moment of inertia of fuselage
gbout elastlc axis of wing

one-half of rolling polar moment of inertia of fuselage
about its longitudinal axis _ .

coordinate denoting deflectlon of elastic axle of wing
coordinate denoting twist of wing about elastic axis

coordinate denoting distance along elagtic axis msasured
from center line of fuselage or root of wing

angle of sweep, measured between wing elastlc axis énd
line perpendicular to fuselage

mess of wing per unit length (w/g)

weight per unlt length
accaleration due to gravity
one~half of mass of fuselage

clrcular frequency of netural mode of vibration, radiens
per second
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8 distance between mass center of wing cross sections or
points of mase concentration and elastic axis of. wing;
vositive when mass center lies forwerd of elastic axis

ep distence between mass center of fuselege and wing elastic
axis; posltive when mass center liles forwerd of elastic
axis

a, coefficient of nth term in power series expansion for ¥y

by coefficient of nth term in power series expansion for ¢

n, 1, 3 integers (1, 2, 3, » + )

A distance between equally spaced spanwlse stations
ENERGY EXPRESSIONS AND DEFLECTION FUNCTIONS

To determine the modes of vibration of wings it is sufficilent
to consider the equilibrium of the semispen only. The airplane is
divided along its longitudinal axis with a coordinate system assigned
as shown in figure 1. In this paper, the fuselage is assumed
inflexible and it therefore possesses only the rigld body properties.

For vibration of this system, the energles considered are the
bending, twisting, and kinetic energles of the wing semispan and
half the kinetic energy of the fuselage. At maximm displacement
of the wing the sum of the strain energy of bending and strain
energy of twisting is given by the well-known expression,

T, I
o2 o
U2 J EI(Q-%) ax + % GJ’(Q'Q> ax (1)
1o ax
0 - o

The kinetic energy of the wing as it passes through the equilibrium
position is given by (see appendix for derivation),

. e L
Vl=?ﬁ myedx-bcuﬂ me¢y.dx+-2—J; Imﬁadx (2)
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‘Half of the kinetic: energy of the fuselage is given sinilarly by
(see appendix for derivation),.

Vo = Lo + Lapopy + Ty + Tpph) (3)
vhere
8 angle of pitch of fuselags
¥ sngle of roll of fuselage-

It can be shown by geometxry that thess angles are related to the
angle of twist at the root, the slope of the elastlic axis at the
root, and the engle of sweep by the following vrelabtions:

Q= (¢ cos A - % sin A>;¢;o | (&)

11:=<¢ sinA+%cos A) (5)
X=0

By the energy method, functions are chosen to represent the
deflection and twlst of the elastic axis of the wing. It 1s con-
venient ‘to represent the deflection and twist by the two general
power series

ygao-i-a.l(x)-l-ae@)+...+a.n(>n+--- (6)
2 n
¢=:'b0+'bl(\%)-lj'b2(%) o ,+bn(%) TR (7)

With these series, the geometricel boundery conditions at the wing
root ( = o) can be setisfied for both the symuetrical and anti=

symmetrical modes of vibration through use of almple relabtionships
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between the coefficlents 8y and .,bO' These velationships will be

given later. The use of power series also allows for complete
freedom In choice of deflection and twist along the wing.

BOUNDARY CONDITIONS AND CHARACTERISTIC EQUATTONS

On substitution of equations (k), (5), (6), and (7) into
equations (1), (2), and (3), the emergies U, Vi, and Vo will

. be expressed in terms of the unknown coefficlents a,, by end

the unknown frequency . It is convenient at this point to
Introduce the boundary conditions. - . .

. .., For symmetrical vibration, the constralning relation at the
wing root is that the fuselage shall not roll, or

: \F?@sinA+%§cosA) = 0 (8)
X0 |
L
vhich gives the following sinible relation between a; and b,

Elimination of &y from V; end Vp (ay; does not appear in TU)

by means of this relation leads to the solubtion for symustrical modes
and frequencies.

For. entisymmetrical vibrations, the comstraining relations at

the wing root are that the deflectlon is zero end that the fuselage
shall not pitch, or

(¥), =0 (10)

and.

8 = 65 cos A - % sinA)Lo =0 (11)
I
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vhich glve the following relations

8, = 0 (12)

Do = <k tan A - (13)

Substitution of these relatlons into the expresesions for Vl
and .. Vo (a, and Db, do not appear in U) leads to a solution for
the antlsymmetrical modes amd freguenciles.

The characteristic modes and frequencles of vi'bration
(symmetrical and antisymuetrical) can be found by minimizetion of
the expression U -~ Vq ~ Vo with respect to the unknown

coefficients a; and by. The following sets of linear

homogeneouvs equetions are derlved in this way for the two types
of vibration.

Symuetricael vibration.- For a4

_B_
ol ) + 3 entn b (Bo + L
I

(1 = 0) (1h)

4
aghy * E an<Ai+n i )4- Do(By - LAy tnA) + > BB =0
n=l

(1=2,3,4 ... (15)
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For Dy

: <]
aoGBo + IEZFA - LAy tan A) + ; an<3n = LA ;q tan A)'

2 .o  lyp -
+'D°<DO+LA2'banA+cog 21-]31%&1‘119

b .
* Z_bn(nn - By tand) =0

n=1

=0y )

8 . t B
aoZBi + :: anBi_l_n + b0<Di - IBi"‘l tan A) + E bnéﬂﬁn - —% = 0
[iM)
n==2

nel

(i = l) 2; 3’ o ° ‘) (17)

Antisymmetrical vibration.- For ay

~

1 ) IFR =
a1<‘\2 + I?D° ten“A + L—-—-—-—-—-a 5 + 12,-51 tan!)

8

+ ;an An+l+%3nt;n19 + Ztlbn(%% ’GanA+B:i+1)=°
n=

(1 =1) (18)
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8 %
A 15, ten A _Cim Ty =0
ar\t+r *t 1O + 8 Atgm T - 5 )t Pi+n =
o n=2 ' I o
(1=2,3, 4% ... (19)
For bi
3 5_ IS By 4n
a1(yPy1 ten A+ Bi+D + E'- 8nBiyn * z ' bh@ﬂn - "‘g"‘) =0
n= n=1 @
(1 =1,2,3, « «.) (20)

The constants Ay, Byin, Cq +n Dy, ns and Eyin represent the
following integrals R

Ai+n =j m<L)i+n o | (21)

HL
By =J me(L)im ) _ (22)
o
Opyn = 2= 1;2(.1‘ =1) f mr(3)" ax (23)
L xl +n
Diyn = f I ax (24)
VO

Byn = 2 j (B} ar (25)
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Different limits, s and +, are used on the summations for ¥y
and ¢ because the number of terms taken in the two expensions need
not be the same. Retailning only the terms involving the coeffi-—
clents &g through a3 and by through by, the two sets of

characteristic equations may be written in the determlinant forms
shown In tables I and II. In the tghles 1t is seen that terms
involving the angle of sweep A appear only in one colum and row
of sach determinant. When A = 0, these determinants lead to
solutions for the free symmstrical and anbtisymmetrical vibrations
of the unswept wing.

SOILUTION OF CHARACTERISTIC EQUATIONS

Values of ap eand 'bp other than zero which satiefy the

equations in tables I and ¥I oen.be found only when the determinents
of the systems of equatlons ere zero. The determinants contain the
unknown frequency ; the values of ® which cause the determinants
to be zero asre the natursl frequencies of vibration. To determlne
the mode associated with a given frequency, one of the unknown
coefficients, a, or bp, 1s set equal to unity and any one of the

equations is discarded. The resulting set of nonhomogeneous equations
is then solved simultansously to obtain the relative values of the
other coefficlents. With the coefficients known, the mode is

obtained directly from equations (6) and (7).

_The values of  satisfying the frequency determinant may be
found by several methods. Perhaps the slimplest way to locate a
frequency root ie to svaluate the determinant for a number of trial
values of ® 1in the expected vicinity of a natural frequency and
to plot a curve of @ versus the valus of the determinant. In most
ceses, the value of ® giving a zero determinant can be obtalned
from the results of three or four evaluatlions. The evaluations may
be performed by the Crout method of solving determinents. (See
reference 1.) The Crout method yields solutlons rapidly and it
provides for a running check which minimizes the possibllity of
computational error. With the procedure Just outlined, any desired
frequency root and mode can be found independently of the othexr
frequencies and modes.

In the Crout solutions of the determinants presented in this
peper, the calculations should be carried to at least eight gignifi-~-
cant flgures. If an insufficient number of significant figures are
carried, errors due to small differences of large numbers will cause
difficulty in obtaining satlsfactory check columns in the Crout



10 NACA RM No. L7H28

solutions. The physical constents Ay,,, By, &and so forth, in

the equations, however, need not be computed to the number of
significant figures uged in solving the determinants. They merely
need be computed as accurately as desired and then treated in the
Crout solutions as being of absolute accuracy.

COMPUTATION OF CONSTANTS

'A certain amount of preparatory calculation must be done before
the characteristic equations can be solved for the frequencies and
modes. This caloulation consists of determining the constants Ay ..,

Bisns Ciuns end so forth. To evaluate the constants, the physical
properties, m, I, Ip, J, e, E, eand G, of the wing must be
known at a number of stations x/L along the wing. Also necessary

are the numerical values of the gquantities (L) which arise from
the use of power series. For convenlence, . (L) has been computed

at lo'stations <i'= 0.1, 0.2, . . .0.9, l.d) for _J varying
from 1 to 10. Thess data arewpresented:in table ITI. The
constants Ai+n‘ B 14m? i+n’ and so forth, are then found by
multiplying thé physical constants m, I, I,, and 80 forth, by-(%if

at each station along the wing and integrating over the span.

" The integrals can be evalunated convenlently by use of the
following numerical integration formuls which 1e derlved from the
properties of a filfth degrse curve.

Ares = %Eﬁ’l(ogea + 1.50b + 1.00c + 1.00d + 1.50e + 0.38f) (26)

In this equation, a, b, ¢, and so0 forth are the ordinates at
successive stations O, 1, 2, and so forth, dividing the curve to be
integrated into five equal sections a distance A in length. For
lO gections, the formmla is . _

il -
© 4 1.50g + 1,000 + 1,001 + 1.503 + 0.38k) - (27)

Aree = 12%:.(0,38a + 1.50b + 1.00c + 1.00d + 1.508 + O.76F
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Making use of this integration formmla, a convenient procedure for
calculating the constants Ay.., Bj.n, CO3 +ns and so forth, is:

(1) Divide the wing into 10 equal sections (a multiple of five).

(2) Tebulaete the wing paremeters m, EI, GJ, me, end I, at

sach station (root station is O and tip station is 10) and mmltiply
the tabulated parameter at station O by 0.38, at station 1 by 1.50,
at station 2 by 1.00, and so forth, until the pgremsters at each
station have all been "welghited” with the proper constent in
equation (27). (In equation (27), &, b, ¢, and so forth, are

actually the paraineters mltiplied by the valuos (%)J; the work

is simplified, however, by first multiplying the perameter by the
"weighting factors" 0,38, 1.50, 1.00, and so forth, and then

J
mltiplying by (%) )
(3) Multiply the "welghted" parametersat each station by the

J . .
approprilate velues of (—E—) taken from table IIT.

(k) Add the products formed in (3) over the length of the wing
and muitiply the sums by 125\/1hk,

(5) Add to the sums in (L) the effect of concentrated messes
which have not been included in the numerlcal integration. For
instance, the addition to the constant A4 ., due to a concentrated

mess, M, located at %=0.5 would be [M(O.5)i+{l.

ACCURACY OF RESULTS

Any analytical solution for airplane wing modes and frequencles
mist necessarily be based on siuplifying sssumptions, and the effect
that these assumptions may have on the accuracy of the solution can
only be determined by compsrison of computed modes and frequencles
with those determined experimentally. In the absence of experimsntal
results, it is helpful to know, nevertheless, the degree to which the
results from an energy solution check the results of an exact
golution (based on the same simplifying assumptions). For comparison,
an exact solution hss been made for & specific example of a uniform
wing mounted on a fuselage. The physical parameters of this systen
are shown in figure 2.
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An energy solution for this case was made, assuming fourth
degree power serles for the expansion of both the deflection and
rotation. -Bdcause the wing. is uniform, the constants in the equations'
wers determined by exact integration over the gemispan. The resulting
determinant Ffor symmetrical vibration is presented in table IV. The
'zeros in the upper right and lowsr left quadrante of this determinant are

. due to the fact that there is no mass coupling along the wing., All

the equations have:been divided through by the factar ml, hence
the appearance of constents such as 1/3, 1/4, 1/5, and. so forth,

and the ratio RM = Zg. The. two lowest frequencies satisfying this

determinant are compared with the exact frequencies in the teble
.tbelow. : . . . o - '

Frequency
Mode (redians/sec)
Exact Energy
1 5h.3 54.3
2 |157.h | 157.4

The frequencies obtained in the exact and emergy solutions were not

determined to more significant figures. The results indicate,

however, that the enprgy solution gives good accuracy. The modes

. assoclated with these frequenciee are presented in figure 3. It is
most probable .that, for these two modes,’a golution using third

degree power series would have glven satisfactory sgrsement with

the exagct solution,

Langley Memorisl Aeronautical Laboratory
National Advisory Committée for Aeronautice
Lengley Fleld, Va.

D . . v - , RN . Lt
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APPENDIX
.DERIVATION OF EXPRESSIONS FOR KINETIC ENERGY

In the energy solution used in this paper, the potential energy
stored in the wing at maximim displacement and the kilnetic energy
of the wing~fuselage system when passing through ths equilibrium
position must be known. This section glves the derivation of the
kinstic~energy expression; the equations for potentlal snergy of
bending and twlst are well known.

In figure 4, a cross sectlon of the wing 1s shown at the instant
it passes the equidiibrium position; the elastlc axis 1s assumed to
have a vertical velocity v, and the cross section is assumesd to be
rotating at an sngular velocity §. Any element of mess dm having
the coordinate +v,0 can be shown to have a total veloclty such that

Vte = (V + Qr cos 9)2 + Qgra sin29 (Al)

The kinetic energy of the element willl be %‘-d.mv'te. If y and ¢
are the maximum values of deflsction and rotation, the velocity v
and rotational velocity & may be shown to be equal to wy and off,
respectively. Substitutlon of these values in the expression for
total velocity and integration of the kinetic energy of all the
elements over the crose section gives for the total kinetic energy
of unit length of the wing at the cross sectlon under consideration

2 -
%m 72 + 2eyf + k2¢_2> ‘

wvhere e is the distance between the elastlc axes and the center of
gravity (e 1s positive when center of gravity is forward of the

. elastic axis) of the cross section and k is the radius of gyration

" of the cross section gbout the elastic axls. Integration of the kinetic
energy over the length of the wing glives for the total kinetic energy
of the wing

L R
vy = %e-f m(y2 + 2oy¢ + k2¢2) ax (A2)
0
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The expression for the kinetic energy of vertical and pitching
motion of the fuselage (half—-fuselage) can be found by epplying
equation (A2) to the fuselage mass. The angle ¢, however, 18
replaced by the pitching angle of the fuselage given by

¢ cos A -2 gina . 'If © is used to denote the pitching
dx %__o

angle, the kinetic energy of verticél and-pitching mbtién of the
- fuselage is -

%%E‘FG"E + EerGI . kFE‘@?)] %:o

oxr et . . . -

eyt

; £

The kinetic energy of the fuselage in rolling motion is

m? -

vhere V¥ 18 the angle pf'foli of the fuselage-glven by
. d . . . PR . ,
<¢ Bin A +.g% 005-@>x_di: The totel kinetic energy of the fuselage
NS -

18 then

2 o : :
Vo = %5-mFy2 + ZmFera + IFP@2 + IF§V%>E_O -(A3)
. . : = | -
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TABLE II — SYSTEM OF EQUATIORS FOR ABTISYMMETRICAL MODES AND FREQUENCIKES OF SWEPT WING
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TABLE IIT — VALUES OF %)

e | & | F & | @ | @

0.1 |0.01 | 0.001 | 0.0001 | 0.00001 | 0.000001 | 0.0000001 |0.00000001 | 0,000000001 | 0.0000000001
2| 04| ,008f .0016| .00032| .000064 | .0000128 | .00000256 | ,000000512 | .000000102L
3| 09| .O27| L0081 .00243| .000729 | .0002187 | .00006561 | .000019683| .0000059049
| 16| L06L| L0256 | .0102k | ,00LO96 | .0D16384 | 00065536 | .0002621Lk | 0001048576
S| .25| .125) .0625| .03125| .015625| .0078125 | .00390625 | .001953125| .000976562%
6| 36| .216| .1296| .01776| .on6656 | .0279936 | 01679616 | 010077696 | .0060466176
S b9 383] L2401 26807 117649 | .0823543 | .0576LBOL | 040353607 | .0282475249
B 6k 512f 096 | 32768 .26214h{ .2097152 | 16777216 | .134217T28| .107374182hL
9| 81| .729| .6561| .590h9 | .531uk1| 4782969 | k3046721 { .387h20u89'| .3486784LOY
1.0 |1.00 | 1.000 | 1,0000 | 1.00000 | 1.000000 | 1.0000000 |1.00000000 |1.000000000 | 1.0000000000
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TABLE IV — SYSTEM OF EQUATIONS APFLICABLE TO NUMERICAL EXAMPLE
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Note: As shown, e and
ez have negative values,

C.G. Elastic axis
¢
—=C

y
Reference plane ) J

Section A-A
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COMMITTEE FOR AERONAUTICS

Figure |~ Coordinate system used in analysis.
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Wing Parameters

£ =10,000,000 psc G = 4,000,000 pse
I = 800 /n. J = /aoo nY
m = aozs Ib- sec:‘//n. Z.= /6 |b=-sec*

Fuselage Parameters
. ) Z
Ipp= 406000 Ib.~-sec’-in. Igg= /G000 /b-5ec-in.

@r==-70/n. Rp=2%5=3

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

F/'gurc 2.- FParameters for numerical cxample.
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Figure 3. — Symmetrical modes of vibration.
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